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Let (X ,.Y) m C Z. be a sequence of stationary Gaussian vectors. We

assume that EX =EY 0. X = Ey2 = 1.
s = EX 0 i n

r2 (m) = EYoY m  
[ In-t2

as Iml- . and

r3(m) = EXoY m m

r3 (-m) = YoX m 3

as m -. . where _ 1 132- 3 and 134 > 0. With their correlation functions

assumed as above {X } and {Ym} are usually called processes with long-range

dependence if 13I 02 1. Let G1 (x) and G2 (x) be the spectral distributions of

{Xm} and {Ym}, and let ZGI and ZG2 be their corresponding random measures.

Since {(Xm.Ym) is stationary there always exists a complex-valued function

G3 (x) such that

r3 (m) = e-imxdCP3(x). Vm C Z.

Since the matrix

Gl(dx) G3(dx) 1
C3 (dx) G2(dx) ,

is positive definite, it follows that

(1) 103 (dx)1
2  G1 (dx)G2 (dx),

Given two functions H(x) and K(x), satisfying EH(Xm) = EK(Ym) = 0.

EH2 (Xm ) <

~' ' ~ % ~ v~. *~ '~ *,' V~ %.~- **
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and EK2 (Y) < *, and having their Hermite expansions as follows:
m

H(x) I c1H1 (x) and X(x) = I d1H (x),.
J=VI J=V2 ''

we define

n-I n-I L
nAl n H(X) an Z = B n I K(YM).

It has been proved that with proper choice of the norming factors A and B
n n

then as n -e . and 7j have limiting distributions. When v (, < 1. i=1.2.

the limiting distribution is non-Gaussian (unless vI =1) and can be represented

by multiple Wiener integrals ([2]. [8)). When the limit law is non-Gaussian.

it is usually said that a non-central limit theorem (or NC1T) is satisfied. On

the other hand a central limit theorem (or CLT. i.e. the norming factor is n
1 2

and the limit law is Gaussian) will hold if rif i > 1 [1]. The purpose of this .'

paper is to study the Joint limiting distribution of (Z , Z). when, in

particular, one component satisfies a CLT. An incomplete attempt at solving

the same problem had been made by Hsiao [4].

The reason we look into this problem is the following: Consider the

following square-integrable function L(.) (possibly infinite - coordinated) of. !'
a stationary Gaussian process, defined by its Wiener-Ito expansion

L = Ik1 (f1 ) + Ik2(f2 ), 1 k, < k2.

nV

where I(f) is the J-fold multiple Wiener integral with kernel f. Let Z be

defined as

n n-I - n-I
S=Cn I IC kNOY + Cn 1 k NOfY

ut=O I M=O 2

n 2
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where U is the m-step shift operator. i.e. (Um*f} (x . ...xk )

exp(im(x I + ... + xk))f(x 1 ..... xk). Previous studies on the limit laws of n

are minly directed to the cases where: both n and n satisfy either a CLT
12

([1]. [3]) or a NCLT [7]. The case where one of and % satisfies a IT

and the other one satisfies a NCLT is still unclear, and the following two

natural questions arise: Will the limit law (if it exists) Z of Z4 be still

equal to the sum of the limit laws " and of 4 and 4 ; and what is the
I 2 1 2

relation between 4 and 4 2. The main result of this paper. stated in the
1 "2

Theorem, provides an answer to these questions. Suppose the underlying

n
stationary Gaussian process for ZL exhibits long-range dependence. For a

certain class of functions L(-). by making use of the formula for the change

variables ([5), p. 32) on the kernels fl and f2 " we may obtain

A In-1 n-1

1 2 n =O ' n ----O

A

for some sequence of stationary Gaussian vectors (X,.Ym). m C Z. " means
m m

equal in distribution. Assume Cn = /2 Suppose Z and Z satisfy a CLT
1 2

and a NCLT respectively. If. furthermore, the conditions in the Theorem are

met by ((X,Y')) , then as a result of the Theorem, it follows thatm m

A
44 and -4+4
1 2 1 2

("L" means independent). i.e. the distribution function L(x) of ZL can be

written as

L(x) f F(x-y)d#(y/o). a > 0,



4 1

for some distribution function F(y) and a standard Gaussian distribution 0(y).

1/2 suhanIt should be pointed out that a Nl.T with norming factor n such as for. i.2.

is shown possible in [6]. A more detailed study of the situation where a CLT

and a NCLT Jointly occur will appear in a subsequent paper by the authors. Now

we formulate our main result:

Theorem. Assume v101 < 1 < v2 02 . When v2 - I we also assume

1+1

0 3 3A 4 > 2

l-Vl0 /21/

Then with A -n and B = n1/2 the limiting distributions and ofn n n
n and n are independent.

Note that is Gaussian by [1].

Throughout the rest of the paper we always assume vl1 I1( I and u2 2 > I.

Later. in proving the Theorem, we shall only deal with the very special case "

where H(x) and K(x) have the following one-term expansion

I

H(x) = HV (x) and K(x) = HV2 (x).
1 2

The reduction of H(x) to its first term is Justified because when vi < I only
*1 1

the first term is relevant to the distribution ZH [8]. In [1] it is made clear

that when v2, 2 ) 1 we need only to consider the K(x) with finite expansion to
AV

prove the central limit theorem. Though we prove the Theorem only for the K(x)

with one-term expansion, the arguments in the proof can be easily extended to

the finite expansion case.

The major tool we use to prove the Theorem is the so-called "diagram

formula" [5] on how to compute the expectation of a product of Hermite

polynomials of standard Gaussian random variables. Prior to giving the

'
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statement of the formula, we need some notations and definitions. Let a given

set of (ei + ... + e ) vertices be arranged Into p levels such that the i-th

level has ei vertices. A graph C is called a diagram of order (e . Isp) if

(I) each vertex is of degree one and (2) edges may pass only between different

levels. By a regular diagram we mean a diagram whose edges do not pass between

levels in different pairs. For each edge w C C connecting the i-th and j-th

level. i < J. define dl(w) = I and d2 (w) = J.

Lemma I. (Diagram Formula) Let (WI ..... Vp) be a Gaussian vector with EV1 = 0.

EW= 1. and EWW = r(i.J). Then for the Hermite polynomials

He (x).....H e (x). we have
1 p

p
E U7 He (W,) = I U r(d1(w).d 2 (w)),

i=l i G wCG

where the sum runs through all the diagrams C of order (t 6...... )
p

The following lemma is well-known and can be easily derived from Lenrma I.

Lemma 2. Given two r.v.*s Z and W with EZ = EW = 0. EZ2 = ao and EW -co.
2'w

then Z and W are independent Gaussian r.v. *s if and only if for all t.m.

- ! a t m if t and m are even

S2 1/2+m/2 (e/2 )!(m/2 )! 1 '2 i ad r

0 otherwise.

In the following "" always denotes bounded Borel sets in R. Then because

r (n) = e- inxdC(x) we have
3 P)3

have.

(2) Eff(x)Z (dx )  (x)ZGJ(dx) = f(x)g(x)dG3 (x)

2 I2 9 2

for f C L 2(G) and g C L 2(G2 ). By Proposition I of [2] or similar arguments it
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can be prve ta there exist G~l(x) and GW"(x)suhta

(3.1) n dx weNl G G(dx)
I n'

and

(3.2) n32 ( log n) 2 ) dx weakly >

as ~ ~ n hee A I and 6(x) = 1 if x=l. and = 0 if x j~1.

We shall need the following lemma~ to prove the Theorem. Recall that

0343 A 1P4. '

Lemmna 3. Assume j3 1. There exists a function G3(x) of locally bounded

variation such that for each bounded Borel set A.

(4) rnm (log M) G) 3

Moroever CG* satisfies

G3([O'y]) C 3 ([-yO]) Y'D

where D is some complex constant. -

Proof: It is sufficient to show that (4) holds for A = O.y] or [-y.OJ. I
Nw.

Define S.

F (x) =r 3 x e1sydy

for x C I:-v,wJ. Since each term in the above sum is bounded by C-IsI for

some constant C. F n(x) converges to G 3(x) for all x. i.e.

* isxe -isT
G3(P) li Frn F(x) 1 r r3(s) is-

IL
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Let A =[O.y]. Define

S IplgM-6(1)A A C
m.y mrlgi) E 3(;) + 3(;))

By G3 A C 3 -) is equal to 5

UP) 3-A)' m.y

0 sin sy
S 'y (log m)-6(3) (
my (3(sm) s

which as m - tends to

Y R if 0 3 $ 34
(4.1) lirnS M = 0S

rnO y j"R f 1 3 4'

where R f e xr (-lo xj- dx. Similarly if we define

13y 3 Q

C I (log m)() CG3 (r G(

m ~ 0 4y

whee I lim(-lg E_6() x (13)(-cos x~x 41)ad(.)iml
P Sr

thenre obaie
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D- (R -l )/2 if P3 ( 4

yP(R + 0 )/2 if P < P

Since the property G3(A) = G3 (-A) is preserved by passing to the limit G we
P) the- 3'

have

'in

G 3(1-Y-O]) rD

The proof is completed. 0

Assume P I again and observe that

mO(log m)-6c(p) 1 G3(MA)

P-01+0 m) 6(p 2)-6(P3) [m 2 ) C (] 1/ 2
_MO-O+2/ (log m) Ob() [m lGl(I)mo (log m)2 ) G2 - . 12.:'.

Then we have an immediate corollary from (3.1), (3.2) and (4):

(4.3) (PI + 3:)/2.

When P > 1. then G3 (dx) is absolutely continuous and its density is continuous.

Let C3 (dx)=f(x)dx. Then

(4.4) lim mG3 () X(A) f(O) , 4"

where X is the Lebesgue measure. (4.3) is clearly satisfied for P > 1. 4'

By (3.1),
I

1-R /2 d.4
1 A

I G1

as n [2]. where Z is the random measure induced by Gl(dx). Since the

% o ' e -de
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distribution of can be represented by the vi- fold Wiener integral, we need

to show that for disjoint A, is. i=1.2,.,l

(Z~ A) Z A,)1
G I 2A)''Z I(VI Z

which is in fact equivalent to showing for each A,

(5) z * (A) 1I
C1 Z

It is not difficult to see that (5) is equivalent to

f ix 1

(5.1) W(A)J e-ix ZG I(dx) -LZ

It is mere technical convenience that leads us to replace Z (A) by W(A).

Define

eix -1n-1I j/
(5.2) K e -1 - 1 ~ ej

n(e ixn- I)n nj-

and

-(-3/2) n-i -~ (x
W n(A) n J f e'j"ZC d

n' x n 1 Z0 (-
AA

(3.1) and the fact that K n(x) converges to (e ix-1)/ix uniformly on every

bounded set imply P

d
(6) W(n)(A) W(A)

as n -4(2]. If we can show
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I n m
lrn E(W n(A)) (Zk)
n-40

r £ m! P

-- ea2m/2 . i2 if e and m are even.2 e/ 2 + m/ e/) (m/2)! 1 2

0 otherwise

then by (6) and Lemma 2, (5.1) follows. Notice that EW2 (A) = 2 and

w2 2
E(Z ) a 2-

Proof of Theorem.

Given a fixed setting of vertices V = (1.v 2  v2) having as

follows its configuration {o ;
0

0o0...o 0

0O0 ... 0
M

00... 0

v2

Define F the set of all regular diagrams of order V and r c the complement of

F, i.e.. the set of all non-regular diagrams of order V. Any subgraph of a

diagram is called a subdiagram if it is itself a diagram and is the union of

levels and the edges on the levels. Any diagram C . rc can be partitioned into

three disjoint subdiagrams V ,I V 2 and VG.3 . which are defined as follows..



V = the maximal subdiagram of G which is regular within itself, and all its

edges satisfy 1 dl(w) < d2 (w) t C or e + 1 dl(w) < d2 (w) e C + m.

VG,2 = the maximal subdiagram of C - GC.1 whose edges satisfy

R+ 1 dl(w) < d2 (w) _ 1 + m.

VG =C - (V01 U V

For each subdiagram Viof C. i=1,2,3, define /o"V

G(;i = (ii the j-th level of V is in V G.})

VG.() = v{' i j _ e}.

VG'I(2) = {j c VG, e + 1 j < e + m}.

In the following E(G) denotes the set of all edges contained in the diagram G.

Use Lemma 2 (Diagram Formula)

E(W (A))(Z)m = E(W (A))2 E(Zn)

• n G n 2

+ . [ CI E(Wn (A))2 UI E(Zn)2]

GEr w'EE(VG, i ) n wrE(VGI)

(2) 1/2x~n -. VG. r 2(Pd1wd2w)

O p .n-l wE(VG,2 ) d1(w)

iV2

-Vc 3(2) 1/2
x[n- IV. rTIdw -

O pi n-l wEE(VG 3 ) r2(Pdl(w) - Pd2 (w)

iCV, 3 d (w)EV. 3 (2)

[1 n -  E( exp(ipd w)x)ZGC (dx)fexp(tPd2 w)X)Z2 (dx)]
wME(VC,3) A
dl (w)eV,3 (1)n

S
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(8) ?+ 1 x A x A

Since n converges to the right hand side of (7), it is sufficient to show

that for fixed G C F'C the second term of (8) vanishes.

(9) lrn An X A x = 0.

Recall the definition of W (A). We have

nn

as n - ,(10) and the central limit theorem for Z imply

(11) Aim = (EW2(A) ) IVC1()/ (a 2)N ,2)

* Using (2) and (5.2). we can rewrite

(12) = -IV* (2)1/2 a ~

0~p. n-l wEE(VG 3 ) 2 lw d2(w)

iCV6 3(2 d (w)CV * (2)

a' -(1- i( P()x

0 T7 n e d 3(n
eCE(V 0 3 ) O pdj1 A

d1 (e )CV6.3(1)

FixPi.IC* ().and e C E(V03  with d,(e) f . we obtain as a result of

(4) in Lema 3 (or (4.4) if P > 1) an asymptotic bound for the second summation

(denoted by ? ) in (12). In the following a EP A I.
n
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(03-2a)/2 x/n
= 1 )(log n) exp(ipd (eX/n)

n A 1)n-IOdl(e)

•exp(-iPd 2(e) x/n) - n.lgn d (n)

-2a)/2 6(P)

= o(n 1 - (log n) e  - I dCx)l).
A ix

If P 1. then

(13) PI - 2a A - 2P _-0* < 0.

(13)

where we make use of the fact that ( (PI + 12)/2 derived right after Lemma 3.

If 0 > 1. clearly (13) still holds. By (13) it follows that •

n

Define

k(1) = the number of edges w satisfying dl(W) i.

and

g(i) = the number of vertices in the i-th level not connecting any of the

first e levels.

We firstly assume that v2 > 1. By the similar argument employed to prove

Proposition in [1], we can develop the following facts: 0

n
(14) lim A2 =0

if VG,2 is nonempty. And secondly an asymptotic bound as (17) can be obtained

for the first sutmmtion in (12) if V, 3 $ *.

6

is "I' 
r r r ~ I U K. UW~-
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n U( 2(pdw) d
O~p n-l wCE(Vc~ d1 w 2(w)

(15) ieV_ (2) ' wc

V . iev 3(2) g(i)
- (n )6.

Note that the a given above is well-defined because it is assumed that v M1
n2

As shown in (2.20) in (1] we have the following inequality

(1) g(I L~L V*C (2)1(1) (i) 2 3
eCv60 3 (2)

(15) and (16) imply that

IV* (2) 1/2
(17) a n=0O(n C.

Then (12). (13.1) and (17) imply 1

n 1V6 3(1)1
S = (0))

Hence if IV~() > 0 (because V~ i*.then

(18) rn =0.

For any non-regular diagram C C F'C if V > I then its subdiagrams VC.2 and VC0 3

can not be empty at the same time, that is either (14) or (18) must hold.

Hence (9) is true.

n
When v 2- 1.* then VG. is empty. i e. A2 is absent. Thus in order to

assure (9) we have to show (18). Also note that when v 2 = 1 the first product

In (12) no longer exists. Rewrite S~ given in (12) in a more simplified form

and apply to It the result of Lmmae 3. We have

IM'
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n Pi +)/2-a 6(0) J

WCE(V3)

* ecp(ip, xln) -

~AO~I anI

Iexp(-.lpd 2()x/n) -i] n ( log n) 6(0)dC A(E)
2 d(w) n12)n

O(n l )2- lg n)()f e ix 1 12 IdG*(x)l).

By the assumption of the Theorem, when v2=1.

01 + 1 1

2 2

-iw

The proof is completed.0
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